Eigenvalues of non-regular linear quasirandom hypergraphs

نویسندگان

  • John Lenz
  • Dhruv Mubayi
چکیده

Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to coregular k-uniform hypergraphs with loops. However, for k ≥ 3 no k-uniform hypergraph is coregular. In this paper we remove the coregular requirement. Consequently, the characterization can be applied to k-uniform hypergraphs; for example it is used in [19] to show that a construction of a k-uniform hypergraph sequence is quasirandom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues and Linear Quasirandom Hypergraphs

Let p(k) denote the partition function of k. For each k > 2, we describe a list of p(k) − 1 quasirandom properties that a k-uniform hypergraph can have. Our work connects previous notions on linear hypergraph quasirandomness by Kohayakawa, Rödl, and Skokan, and by Conlon, Hàn, Person, and Schacht, and the spectral approach of Friedman and Wigderson. For each of the quasirandom properties that i...

متن کامل

Eigenvalues and Quasirandom Hypergraphs

Let p(k) denote the partition function of k. For each k ≥ 2, we describe a list of p(k) − 1 quasirandom properties that a k-uniform hypergraph can have. Our work connects previous notions on hypergraph quasirandomness, beginning with the early work of Chung and Graham and Frankl-Rödl related to strong hypergraph regularity, the spectral approach of Friedman-Wigderson, and more recent results of...

متن کامل

Perfect packings in quasirandom hypergraphs I

Let k ≥ 2 and F be a linear k-uniform hypergraph with v vertices. We prove that if n is sufficiently large and v|n, then every quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum degree Ω(nk−1) admits a perfect F -packing. The case k = 2 follows immediately from the blowup lemma of Komlós, Sárközy, and Szemerédi. We also prove positive results for some nonlinea...

متن کامل

On a Turán Problem in Weakly Quasirandom 3-uniform Hypergraphs

Extremal problems for 3-uniform hypergraphs are known to be very difficult and despite considerable effort the progress has been slow. We suggest a more systematic study of extremal problems in the context of quasirandom hypergraphs. We say that a 3-uniform hypergraph H “ pV,Eq is weakly pd, ηq-quasirandom if for any subset U Ď V the number of hyperedges of H contained in U is in the interval d...

متن کامل

The poset of hypergraph quasirandomness

Chung and Graham began the systematic study of hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017